Solutions to NCERT Physics Class 12 (Ray Optics)

    1. A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?
      Answer:Size of the candle, h= 2.5 cmImage size = h’Object distance, u= −27 cmRadius of curvature of the concave mirror, R= −36 cmFocal length of the concave mirror, f=R/2 = -18 cm

      Image distance = v

      The image distance can be obtained using the mirror formula:

      \frac{1}{u}+\frac{1}{v}=\frac{1}{f}

      \frac{1}{v}=\frac{1}{f}-\frac{1}{u}

      =\frac{1}{-18}-\frac{1}{-27}=\frac{-3+2}{54}=-\frac{1}{54}

      Therefore, v=-54cm

      Therefore, the screen should be placed 54 cm away from the mirror to obtain a sharp image.

      The magnification of the image is given as: m=\frac{h'}{h}=-\frac{v}{u}

      Therefore, h'=-\frac{v}{u}\times h = -\frac{-54}{-27}\times 2.5 = - 5 cm

      The height of the candle’s image is 5 cm. The negative sign indicates that the image is inverted and real.

      If the candle is moved closer to the mirror, then the screen will have to be moved away from the mirror in order to obtain the image.

    2. A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm. Give the location of the image and the magnification. Describe what happens as the needle is moved farther from the mirror.
    3. A tank is filled with water to a height of 12.5 cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4 cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?
    4. Figures 9.34(a) and (b) show refraction of a ray in air incident at 60° with the normal to a glass-air and water-air interface, respectively. Predict the angle of refraction in glass when the angle of incidence in water is 45º with the normal to a water-glass interface [Fig. 9.34(c)]. 
    5. A small bulb is placed at the bottom of a tank containing water to a depth of 80 cm. What is the area of the surface of water through which light from the bulb can emerge out? Refractive index of water is 1.33. (Consider the bulb to be a point source.)
    6. A prism is made of glass of unknown refractive index. A parallel beam of light is incident on a face of the prism. The angle of minimum deviation is measured to be 40°. What is the refractive index of the material of the prism? The refracting angle of the prism is 60°. If the prism is placed in water (refractive index 1.33), predict the new angle of minimum deviation of a parallel beam of light.
    7. Double-convex lenses are to be manufactured from a glass of refractive index 1.55, with both faces of the same radius of curvature. What is the radius of curvature required if the focal length is to be 20 cm?
    8. A beam of light converges at a point P. Now a lens is placed in the path of the convergent beam 12 cm from P. At what point does the beam converge if the lens is (a) a convex lens of focal length 20 cm, and (b) a concave lens of focal length 16 cm?
    9. An object of size 3.0 cm is placed 14 cm in front of a concave lens of focal length 21 cm. Describe the image produced by the lens. What happens if the object is moved further away from the lens?
    10. What is the focal length of a convex lens of focal length 30 cm in contact with a concave lens of focal length 20 cm? Is the system a converging or a diverging lens? Ignore thickness of the lenses.
    11. A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of focal length 6.25 cm separated by a distance of 15 cm. How far from the objective should an object be placed in order to obtain the final image at (a) the least distance of distinct vision (25 cm), and (b) at infinity? What is the magnifying power of the microscope in each case?
    12. A person with a normal near point (25 cm) using a compound microscope with objective of focal length 8.0 mm and an eyepiece of focal length 2.5 cm can bring an object placed at 9.0 mm from the objective in sharp focus. What is the separation between the two lenses? Calculate the magnifying power of the microscope,
    13. A small telescope has an objective lens of focal length 144 cm and an eyepiece of focal length 6.0 cm. What is the magnifying power of the telescope? What is the separation between the objective and the eyepiece?
    14. (a)A giant refracting telescope at an observatory has an objective lens of focal length 15 m. If an eyepiece of focal length 1.0 cm is used, what is the angular magnification of the telescope?(b) If this telescope is used to view the moon, what is the diameter of the image of the moon formed by the objective lens? The diameter of the moon is 3.48 × 106 m, and the radius of lunar orbit is 3.8 × 108 m.

Five marks questions from Electronic Devices (Long Answer Type)

  1. Explain the formation of energy Bands in solids. Distinguish between metals, insulators and semiconductors on the basis of band theory.
  2. Distinguish between intrinsic and extrinsic semiconductors and the conduction in P type and N type semiconductors.
  3. Explain the formation of depletion region and barrier potential in a pn junction.
  4. Draw the circuit diagram used to study the Forward and reverse bias characteristics and draw the graph for forward bias and reverse bias.
  5. Describe the working of a half wave rectifier  with the help of a neat labeled diagram and draw the input and output wave forms.
  6. Describe the working of a full wave rectifier with the help of a neat labelled diagram and draw the input and output wave forms.
  7. Draw the symbols of npn and pnp transistor. Show the biasing of a transistor and explain transistor action. 
  8. Describe the working of an npn transistor in CE configuration as an amplifier.
  9. Explain the working of a transistor in CE configuration as oscillator.
  10. Explain the action of transistor as a switch.

(Have some more idea? Post them as comments)

How was CBSE Science Exam for Class X?

The preliminary examination of the All India P...

CBSE Science exam was today (20 March 2012).

How was the exam?

Many students reported that the exam was quite easy and could easily score 90% and above.

How was the Science exam for you?

Were there any errors in the question paper?

Were there any question out of syllabus?

Were the diagrams and other questions the expected ones?

Were there any questions beyond comprehension?

Respond now….

You can post the difficult and confusing questions as comments to this post and we’ll discuss the solutions

Enhanced by Zemanta

Class 10 CBSE Science Summative Assessment II

Download A Model Question paper for Class 10 CBSE Science Summative Assessment II

CBSE_class_10_science_SA2

Click here to Download the Marking Scheme

CBSE 2012

CBSE (Central Board of Secondary Education) has started online counselling for students and parents for Board Exams.

The first phase of this pre-exam counselling will start from Wednesday Feb 1,2012 and will continue until April 16 2012, for those appearing for board examinations this year.

Toll Free Number 1800-180-3456 is allotted to talk with experts. Anyone can call between 8 a.m. to midnight from Feb 1 to April 16, 2012.

This year, approximately 67 experts, including principals, trained counsellors from CBSE affiliated government and private schools and few psychologists are participating in tele-counselling.